Angular momentum transport and element mixing in the stellar interior I . Application to the rotating

نویسنده

  • Yang
چکیده

Aims. The purpose of this work was to obtain diffusion coefficient for the magnetic angular momentum transport and material transport in a rotating solar model. Methods. We assumed that the transport of both angular momentum and chemical elements caused by magnetic fields could be treated as a diffusion process. Results. The diffusion coefficient depends on the stellar radius, angular velocity, and the configuration of magnetic fields. By using of this coefficient, it is found that our model becomes more consistent with the helioseismic results of total angular momentum, angular momentum density, and the rotation rate in a radiative region than the one without magnetic fields. Not only can the magnetic fields redistribute angular momentum efficiently, but they can also strengthen the coupling between the radiative and convective zones. As a result, the sharp gradient of the rotation rate is reduced at the bottom of the convective zone. The thickness of the layer of sharp radial change in the rotation rate is about 0.036 R ⊙ in our model. Furthermore, the difference of the sound-speed square between the seismic Sun and the model is improved by mixing the material that is associated with angular momentum transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model of the entropy flux and Reynolds stress in turbulent convection

We propose a closure model for the transport of entropy and momentum in astrophysical turbulence, intended for application to rotating stellar convective regions. Our closure model is first presented in the Boussinesq formalism, and compared with laboratory and numerical experimental results on Rayleigh-Bénard convection and Homogeneous Rayleigh-Bénard convection. The predicted angular momentum...

متن کامل

Effect of the μ-gradients in main sequence and subgiant Pop I stars

We present a first set of results concerning stellar evolution of rotating low-mass stars. Our models include fully consistent transport of angular momentum and chemicals due to the combined action of rotation induced mixing (according to Maeder & Zahn 1998) and element segregation. The analysis of the effects of local variations of molecular weight due to the meridional circulation on the tran...

متن کامل

Presupernova Evolution of Rotating Massive Stars I: Numerical Method and Evolution of the Internal Stellar Structure

The evolution of rotating stars with zero-age main sequence (ZAMS) masses in the range 8M⊙ to 25M⊙ is followed through all stages of stable evolution. The initial angular momentum is chosen such that the star’s equatorial rotational velocity on the ZAMS ranges from zero to ∼ 70% of break-up. The stars rotate rigidly on the ZAMS as a consequence of angular momentum redistribution during the pre-...

متن کامل

Angular-Momentum Coupling through the Tachocline

Astronomical observation of stellar rotation suggests that at least the surface layers of the Sun have lost a substantial amount of the angular momentum that they possessed at the beginning of the main-sequence phase of evolution; and solar-wind observations indicate that magnetic coupling is still draining angular momentum from the Sun today. In addition, helioseismological analysis has shown ...

متن کامل

On shear-induced turbulence in rotating stars

We review various prescriptions which have been proposed for the turbulent transport of matter and angular momentum in differentially rotating stellar radiation zones. A new prescription is presented for the horizontal transport associated with the anisotropic shear turbulence which is produced by the differential rotation in latitude; this ‘β-viscosity’ is drawn from torque measurements in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008